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Virus recognition and response by the innate immune system are critical components of host defense against infection. Activa-
tion of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-
borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like
receptor (RLR) protein family that recognize viral RNA and activate defense programs that suppress infection. We evaluated the
individual functions of RIG-I and MDA5 both in vitro and in vivo in pathogen recognition and control of WNV. Lack of RIG-I
or MDA5 alone results in decreased innate immune signaling and virus control in primary cells in vitro and increased mortality
in mice. We also generated RIG-I�/� � MDA5�/� double-knockout mice and found that a lack of both RLRs results in a com-
plete absence of innate immune gene induction in target cells of WNV infection and a severe pathogenesis during infection in
vivo, similar to findings for animals lacking MAVS, the central adaptor molecule for RLR signaling. We also found that RNA
products from WNV-infected cells but not incoming virion RNA display at least two distinct pathogen-associated molecular pat-
terns (PAMPs) containing 5= triphosphate and double-stranded RNA that are temporally distributed and sensed by RIG-I and
MDA5 during infection. Thus, RIG-I and MDA5 are essential PRRs that recognize distinct PAMPs that accumulate during WNV
replication. Collectively, these experiments highlight the necessity and function of multiple related, cytoplasmic host sensors in
orchestrating an effective immune response against an acute viral infection.

West Nile virus (WNV) is a positive-sense single-stranded
RNA (ssRNA) virus of the flavivirus genus and has recently

emerged as a primary cause of viral encephalitis in the Western
hemisphere (1). The virus was endemic originally to portions of
Africa and Asia, where it cycles in nature between birds and mos-
quitoes. Humans become infected with WNV as incidental hosts
following virus exposure from a feeding, infected mosquito. Since
its emergence into North America in 1999, there have been over
36,000 cases of human WNV infection in the United States, in-
cluding the second highest annual peak of over 5,000 cases in 2012
alone (2, 3). Moreover, there remains a potential for newly emerg-
ing pathogenic WNV strains to cause additional and possibly in-
creasingly severe human outbreaks (4, 5). Infection with WNV is
characterized by an acute febrile episode that can progress to neu-
roinvasive disease, including encephalitis, meningitis, and flaccid
paralysis. The greatest risk for severe disease is in the elderly and
immunocompromised (6). In human WNV cases with neuroin-
vasive disease, death occurs in approximately 10% of patients (1,
2, 7, 8).

Many aspects of WNV infection, immunity, and clinical dis-
ease in humans are recapitulated in mouse challenge models. Sub-
cutaneous inoculation of WNV in mice results in a pathogenesis
sequence that includes local infection in cells (keratinocytes and
Langerhans cells) of the skin, migration of infected dendritic cells
to the draining lymph nodes, and the development of viremia,
which ultimately facilitates crossing of the blood-brain barrier and
infection of neurons in the central nervous system (CNS) (7, 9).
The mouse model of WNV infection has revealed many key host-
pathogen interactions that control the outcome of WNV infection
and immunity (7, 10). Components of the innate and adaptive
immune system are essential for protection from WNV infection.
Innate immune programs involved in pathogen recognition, sig-

nal transduction, and effector function are required for effective
antiviral immunity against WNV infection and disease (11–19),
whereas antibody and cell-mediated immunity is necessary for
limiting virus dissemination, clearing WNV from target cells in
the periphery and CNS, and preventing disease after secondary
exposure (20–22). An underlying concept extending from many
studies of WNV infection in gene knockout (KO) mice is that
compromise of innate antiviral immunity can ultimately result in
enhancement of virus entry or replication in the CNS, leading to
neurologic disease and mortality (10).

During WNV infection, the innate immune response serves to
control tissue tropism of infection and restrict virus entry into the
CNS (10, 23, 24). WNV and other RNA viruses trigger the innate
host defense response upon non-self recognition by the RIG-I-like
receptors (RLRs), including RIG-I and melanoma differentiation
antigen 5 (MDA5) (25). Prior studies in cell culture have shown
that flavivirus recognition during acute infection is mediated by
both RIG-I and MDA5 (26). For WNV, the RLRs are required for
induction of type I interferon (IFN) and innate antiviral re-
sponses, with RIG-I proposed to induce gene expression early in
infection and MDA5 signaling occurring at a later stage (12, 14, 27,
28). RLR signaling is mediated through the adaptor protein
MAVS, which itself is essential for controlling WNV infection and
immunity in vitro and in vivo (14). MAVS-dependent RLR signal-
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ing activates the transcription factors IFN regulatory factor 3
(IRF-3), IRF-5, IRF-7, and NF-�B, to promote gene expression
programs that limit WNV replication and spread and to modulate
adaptive immunity (16, 17, 27, 29–31).

RIG-I is believed to bind to WNV RNA to initiate innate im-
mune signaling, but the specific determinants of recognition of
flavivirus RNA by RIG-I remain unknown (32). Moreover, the
role of MDA5 in WNV recognition is not well defined, nor have
the combinatorial and distinct functions of RIG-I and MDA5 in
pathogen recognition and host defense been revealed. Studies that
characterize pathogen-associated molecular pattern (PAMP) li-
gands of RIG-I have demonstrated that non-self recognition de-
pends on several properties of viral RNA, including PAMP motif
length, structure, modification, and composition (33–36). Multi-
ple studies show that RNA ligands of RIG-I require an exposed 5=
triphosphate (5=-ppp) for recognition and binding (33, 35, 37).
Studies to characterize the features of an MDA5-specific PAMP
ligand show that long, stable double-stranded RNA (dsRNA)
and/or “higher order” RNA complexes containing both dsRNA
and ssRNA are preferred PAMP ligands, though the nature of such
RNA complexes is unknown (38, 39). The �11-kb WNV genome
contains a 5= Cap-1 structure that is expected to mask the 5=-ppp
necessary for RIG-I recognition. The dsRNA replication interme-
diates or highly structured subgenomic fragments that accumu-
late within cells during infection could serve as possible MDA5
ligands (7, 40), although such PAMPs may be sequestered in
membrane-derived replication “packets” with limited accessibil-
ity to RLRs (41, 42). As flaviviruses share a replication program
(43), assessment of WNV interactions with RIG-I and MDA5 will
provide a general understanding of how the host recognizes cellu-
lar infection by flaviviruses, which include a family of related
pathogens of global public health concern such as dengue virus
(26), Japanese encephalitis virus (44), and yellow fever virus (45).

In the current study, we assessed the individual and combined
roles of RIG-I and MDA5 in pathogen recognition and immunity
to WNV infection using wild-type (WT) and RLR KO mice and
cells. We show that each RLR individually contributes to pathogen
recognition and immune protection against WNV in vivo and in
vitro, and we establish that RIG-I and MDA5 detect distinct
PAMPs with differential kinetics during the course of WNV rep-
lication to mediate complementary, nonredundant roles in viral
detection and innate immune gene induction.

MATERIALS AND METHODS
Mouse studies. RIG-I�/� mice and their wild-type littermate controls
have been described previously (44, 46) and were obtained as a generous
gift from S. Akira (Osaka University). MDA5�/� mice were kindly pro-
vided by M. Colonna (Washington University, St. Louis, MO). MAVS�/�

mice were previously described (47). For production of double knockout
(DKO) mice lacking both RIG-I and MDA5, RIG-I�/� and MDA5�/�

mice were intercrossed, and the resulting DKO offspring were back-
crossed into a C57BL/6 background through the F3 generation. The re-
sulting DKO line used in this study has an approximately 94% C57BL/6
genetic background, as determined by microsatellite DNA analysis. All
mice were genotyped and bred under pathogen-free conditions in the
animal facility at the University of Washington. Experiments were per-
formed with approval from the University of Washington Institutional
Animal Care and Use Committee. Age-matched 6- to 12-week-old mice
were inoculated subcutaneously (s.c.) in the left rear footpad with 100
PFU of WNV isolate TX 2002-HC (WNV-TX) in a 10-�l inoculum di-
luted in Hanks balanced salt solution (HBSS) supplemented with 1%

heat-inactivated fetal bovine serum (FBS). Mice were monitored daily for
morbidity and mortality.

Cells and viruses. Working stocks of WNV-TX were generated by
propagation on Vero E6 cells, and titers were determined by standard
plaque assay on BHK-21 cells as previously described (14). This virus
preparation and methods differ slightly from those used for WNV-NY in
the study described in the accompanying paper by Lazear et al. (48). WNV
infections were performed by incubating virus at the indicated multiplic-
ity of infection (MOI) with cells in serum-free medium for 1 h, followed
by removal of the virus and addition of Dulbecco modified Eagle medium
(DMEM) supplemented with 10% FBS, 1 mM sodium pyruvate, 2 mM
L-glutamine, 1� HEPES (pH 7.3), antibiotic-antimycotic solution, and
1� nonessential amino acids (complete DMEM). Primary mouse embry-
onic fibroblasts (MEFs) were generated from RIG-I�/�, MDA5�/�,
MAVS�/�, RIG-I�/� � MDA5�/� DKO, and WT control mice as previ-
ously described (17) and grown in complete DMEM. To facilitate direct
comparison of signaling in our PAMP characterization studies, we also
generated primary MEFs from RIG-I�/� embryos of the F3 generation
backcrossed onto the C57BL/6 background and used these cells to com-
pare directly to WT, MDA5�/�, and DKO MEFs. Primary bone marrow-
derived macrophages (M�) and dendritic cells (DCs) were generated as
described previously (17). Sendai virus, Cantell strain, was purchased
from Charles River. Cells were infected with 100 HA units per ml of Sendai
virus and harvested at 24 h postinfection. Encephalomyocarditis virus
(ECMV) was a gift of R. Silverman (Cleveland Clinic), and cells were
infected at an MOI of 5 and harvested at 24 h postinfection.

IFN-� ELISA. IFN-� in cell culture supernatants was measured by
using the mouse-specific IFN-� enzyme-linked immunosorbent assay
(ELISA) kit according to the manufacturer’s protocol (PBL Biomedical
Laboratories).

RNA extraction and analysis. Total cellular RNA from cultured cells
was collected for quantitative reverse transcription-PCR (qRT-PCR) us-
ing the RNeasy kit (Qiagen) and reverse transcribed using the iScript
select cDNA synthesis kit using both oligo(dT) and random primers (Bio-
Rad). Cellular mRNA and viral RNA expression levels were determined by
SYBR green qRT-PCR using gene- or virus-specfic primers. Specific
primer sets are as follows: mGAPDH forward, CAACTACATGGTCTAC
ATGTTC; mGAPDH reverse, CTCGCTCCTGGAAGATG; mIFN� for-
ward, GGAGATGACGGAGAAGATGC; mIFN� reverse, CCCAGTGCT
GGAGAAATTGT; mIL6 forward, GTTCTCTGGGAAATCGTGGA;
mIL6 reverse, TGTACTCCAGGTAGCTATGG; WNV forward, CGCCT
GTGTGAGCTGACAAAC; WNV reverse, CATAGCCCTCTTCAGTCC;
mIFN-a2a, purchased from SA Biosciences; mIRF-7 forward, CCCATCT
TCGACTTCAGCAC; mIRF-7 reverse, TGTAGTGTGGTGACCCTTGC;
mIFIT2 forward, CTGGGGAAACTATGCTTGGGT; and mIFIT2 re-
verse, ACTCTCTCGTTTTGGTTCTTGG.

RNA preparation. Infected cell RNA (icRNA) or mock-infected cell
RNA (mcRNA) was extracted using TRIzol LS reagent according to the
manufacturer’s protocol (Invitrogen). WNV virus particle RNA (virion
RNA) was purified by layering precleared infected cell supernatants over a
20% sucrose cushion, followed by centrifugation for 4 h at 70,000 � g in a
Beckman Coulter SW 40 Ti rotor. RNA was extracted from sedimented
virions using TRIzol LS. In vitro-transcribed 5= and 3= nontranslated re-
gions (NTR) of WNV were generated as previously described (40, 49).
RNA concentrations were determined by absorbance using a NanoDrop
spectrophotometer. icRNA was treated with Antarctic phosphatase (AP)
to remove phosphate moieties or RNase III to digest dsRNA, followed by
ethanol and sodium acetate precipitation (New England BioLabs). Trans-
fections of RNA were performed with a TransIT-mRNA transfection kit
according to the manufacturer’s protocol (Mirus Bio) into cells pretreated
for 30 min with 20 �g/ml of cycloheximide (CHX) in complete DMEM.
Total cellular RNA from transfected cells was collected for qRT-PCR 8 to
10 h posttransfection using an RNeasy kit.

Immunoblot analysis. Protein extracts were prepared as previously
described (50), and 20 �g of protein lysate was analyzed by SDS-poly-
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acrylamide gel electrophoresis followed by immunoblotting. The follow-
ing primary antibodies were used: anti-murine IFIT2 (gift of G. Sen,
Cleveland Clinic), goat anti-WNV NS3 (R&D Systems), mouse antitubu-
lin (Sigma), and mouse anti-glyceraldehyde-3-phosphate dehydrogenase
(anti-GAPDH; Santa Cruz). All secondary antibodies were purchased
from Jackson ImmunoResearch. Immunoreactive bands were detected
with Amersham ECL Plus reagent (GE Healthcare).

Statistical analysis. In vivo Kaplan-Meier curves were analyzed by log
rank test. All in vitro statistics were obtained by an unpaired, two-tailed
Student t test. A P value of �0.05 was considered significant. All data were
analyzed using Prism software (GraphPad Prism).

RESULTS
RIG-I and MDA5 are essential for protection against WNV in-
fection in vivo. To determine the individual roles of RIG-I and
MDA5 in WNV infection and immunity, we assessed WNV
pathogenesis in WT mice and in RIG-I�/� or MDA5�/� mice. An
in-depth, direct analysis of the respective roles of the individual
RLRs has been hampered by the embryonic lethality of the RIG-
I�/� genotype in a complete C57BL/6 background, while
MDA5�/� mice are fully viable on several genetic backgrounds
(44). To circumvent embryonic lethality, the RIG-I	/	and RIG-
I�/� mice were generated on a mixed ICR � 129Sv � C57BL/6
genetic background (44). MDA5�/� mice, in comparison, were
generated originally on a 129Sv background without any noted
developmental defects (51) and were backcrossed subsequently to
a 99% pure C57BL/6 background to facilitate WNV pathogenesis
studies. Each RLR single-knockout mouse line was evaluated in
comparison to its own individual wild-type (WT) control. We
infected mice subcutaneously with 102 PFU of WNV-TX and
monitored morbidity and mortality. RIG-I�/� mice were more
susceptible to WNV infection than were their WT controls, with
enhanced lethality (50% versus 17%, P � 0.05) observed over the
20-day monitoring period of infection (Fig. 1a). Similar results
were obtained when we compared MDA5�/� mice with their re-
spective WT controls, with significantly more (70% versus 30%;
P � 0.02) MDA5�/� mice dying from WNV infection (Fig. 1b).
We also intercrossed RIG-I�/� � MDA5�/� double-knockout
(DKO) mice lacking expression of both RIG-I and MDA5, and
this line was backcrossed into a C57BL/6 background through the
F3 generation to yield a strain of �94% C57BL/6, as defined by
microsatellite DNA analysis (data not shown). DKO mice exhib-
ited markedly increased susceptibility to WNV infection com-
pared to that of WT C57BL/6 control mice or RIG-I�/� or
MDA5�/� mice, and they had a more rapid mean time to death,

�8 days (100% versus 50%; P � 0.0001) (Fig. 1c). The suscepti-
bility of DKO mice to WNV infection was remarkably similar to
that of MAVS�/� mice, which were generated on a pure C57BL/6
background (Fig. 1c) (14). These results demonstrate that RLR
signaling from both RIG-I and MDA5 is required for protection
against WNV infection in vivo.

RIG-I and MDA5 are both required for innate immune gene
induction and control of WNV replication. To determine how
RIG-I and MDA5 individually regulate innate immune gene ex-
pression and control of WNV replication, we performed a detailed
time course analysis of gene expression and virus replication
within low-passage-number primary MEFs from RIG-I	/	 WT,
RIG-I�/�, C57BL/6 WT, MDA5�/�, and DKO mice. For each
analysis, we measured viral RNA and compared innate immune
gene expression in mock-infected cells with that in WNV-infected
cells at a high multiplicity of infection (MOI 
 5), determining the
fold change in RNA expression levels (Fig. 2). Whereas WNV
RNA replicated to higher levels (4-fold difference [P � 0.003] at
48 h postinfection [hpi]) throughout the 48-h time course in RIG-
I�/� than in cognate WT MEFs (Fig. 2a), no appreciable differ-
ences in viral infection were observed between WT and MDA5�/�

cells (P � 0.05 at 48 hpi) (Fig. 2b). The IFN-� gene is an acute
innate immune response gene that is induced early after virus
infection (10). The increase in WNV replication in RIG-I�/�

MEFs corresponded with an early deficit (14- and 13-fold differ-
ences [P � 0.03] at 8 and 10 hpi) of IFN-� mRNA induction, with
expression reaching WT levels subsequently (Fig. 2c). In compar-
ison, IFN-� expression was induced equivalently in WNV-in-
fected WT and MDA5�/� cells throughout the time course (P �
0.05 at 10 and 48 hpi) (Fig. 2d). We also examined the WNV-
induced expression of the gene for IFN-�2a, a comparably late-
expressed innate immune response cytokine that amplifies and
diversifies innate immune gene expression. IFN-�2a is induced
after IFN-� signaling, as it requires IRF-7 induction and activa-
tion (17, 52). We failed to detect a major difference in IFN-�2a
mRNA expression over a course of 22 to 48 hpi between WT and
RIG-I�/� cells (Fig. 2e). Remarkably, MDA5�/� cells showed a
significant deficit in IFN-�2a expression (2- and 3.8-fold differ-
ences [P � 0.003] at 34 and 42 hpi, respectively) compared to WT
controls at late time points of infection (Fig. 2f). These results
verify that RIG-I is essential for early innate immune gene induc-
tion and virus control (12) and reveal a specific role for MDA5 in
the later, amplification phase of the innate immune response after
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FIG 1 In vivo pathogenesis of RLR KO mice infected with WNV. Adult RLR KO mice and WT controls were infected with 102 PFU of WNV and monitored for
survival. RIG-I	/	 mixed-background mice (n 
 13) and RIG-I�/� mixed-background mice (n 
 16) (a), C57BL/6 WT (n 
 37) and MDA5�/� mice (n 
 16)
(b), and RIG-I�/� � MDA5�/� (n 
 11) mice, RIG-I	/	 � MDA5	/	 littermate controls (n 
 8), and MAVS�/� (n 
 8) mice (c) all exhibit significantly greater
mortality rates than did their respective controls (P � 0.05, P � 0.02, and P � 0.0001).
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FIG 2 Innate immune gene expression and viral RNA accumulation over a WNV infection time course. Primary MEFs were infected with WNV or mock
infected, and innate immune gene induction or viral RNA accumulation in each cell line was determined by qRT-PCR and plotted as relative fold
induction compared to that of mock cells and normalized to GAPDH expression. Cell lines used for panels a to f were mixed-background RIG-I	/	 or
RIG-I�/� compared to each other or C57BL/6 WT and MDA5�/� compared to each other. Panels a and b, c and d, and e and f represent WNV RNA, IFN-�
mRNA, and IFN-�2a mRNA accumulation over time in infected MEFs. The graphs show the means 
 SDs from triplicate analyses and are representative
of three independent experiments. (g) WNV RNA accumulation in WT versus RIG-I�/� � MDA5�/� MEFs; a summary of innate immune gene induction
is shown in Table 1.
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WNV infection. We note that the early deficit in IFN-� produc-
tion resulted in increased viral replication in infected cells during
time points before WNV can efficiently antagonize IFN signaling,
whereas the late defect in IFN-�2a production did not result in
increased WNV replication in MEFs under single-step growth ki-
netic conditions, possibly because at these points accumulated
viral nonstructural proteins can antagonize IFN signaling (53, 54).

We next assessed the combined roles of RIG-I and MDA5 in
controlling WNV replication and promoting innate immune gene
induction in MEFs. DKO cells were mock infected or infected with
WNV over a 72-h time course. As expected, WNV RNA accumu-
lated to much higher levels (�60-fold difference at 72 hpi) in
DKO than in WT cells (Fig. 2g). We also performed qRT-PCR
analysis to examine the expression of a subset of RLR-responsive
innate immune genes previously identified from transcriptional
profiling studies of WNV-infected cells (12). Remarkably, while
these genes were induced highly in WT cells, none were signifi-
cantly induced in DKO cells after WNV infection (Table 1). These
observations are consistent with recent results demonstrating that
in target cells of WNV infection, MAVS-dependent signaling is
the predominant pathway through which viral RNA is sensed for
host defense gene induction (29). Our results demonstrate that
RIG-I and MDA5 are the two essential PRRs that sense WNV
infection and induce the antiviral response through MAVS-de-
pendent signaling.

MDA5 is required to control virus replication in myeloid
cells. Our results suggest that RIG-I mediates early/initial PAMP
recognition and signaling, while MDA5 mediates late signaling to
amplify innate immune actions during WNV infection. While
previous studies support a role for RIG-I in initial triggering of
innate immune defenses against WNV infection, the role of
MDA5 in this process has not been evaluated (12, 28, 32). To
assess the role of MDA5 in innate immune signaling in bona fide
in vivo target cells of WNV infection, we performed time course
analysis to evaluate the levels of infectious WNV production and
gene induction in primary bone marrow-derived macrophages
(M�) and dendritic cells (DCs) prepared from WT and MDA5�/�

mice. M� and DCs from MDA5�/� mice supported increased
virus growth compared to WT cells (4-fold difference [P � 0.04]
at 36 h and 2- and 3-fold differences [P � 0.008 and P � 0.02],
respectively) (Fig. 3a and b). Immunoblot analysis demonstrated
that WNV proteins accumulated to higher levels in MDA5�/� M�
and DCs than in WT cells (especially at 36 h), whereas DCs exhib-
ited a concomitant reduction in the virus-induced expression of
IFIT2, an IFN-stimulated gene (ISG) that is downstream of RLR
signaling and restricts WNV infection (Fig. 3c and d) (50, 55). We

also found that MDA5�/� M� and DCs produced lower levels of
IFN-� postinfection than WT cells (Fig. 3e and f), despite the
increased viral burden. As controls, we also assessed IFN-� pro-
duction in response to Sendai virus (a RIG-I-specific stimulus
[44]) and encephalomyocarditis virus (ECMV; an MDA5-specific
stimulus [51]), respectively, in WT and MDA5�/� M� and DCs.
Although Sendai virus induced robust production of IFN-�,
ECMV infection failed to induce IFN-� production in MDA5�/�

DCs. These results demonstrate that MDA5 is essential for opti-
mal control of WNV replication and induction of antiviral host
defense genes in cells that are targets of infection in vivo.

To assess the combined roles of RIG-I and MDA5 in detecting
and controlling WNV infection in myeloid cells, we generated
DKO DCs and compared their response with those of WT and
MAVS�/� cells. WNV replicated to increased levels (18-fold
higher) in DKO cells compared to WT cells, similar to observa-
tions in parallel cultures of MAVS�/� DCs (17-fold higher) (Fig.
3g). Moreover, and in contrast to MDA5�/� cells, there was no
detectable induction of IFN-� production or innate immune gene
expression (compare Fig. 3a to d with Fig. 3h and i) by DKO or
MAVS�/� DCs after WNV infection. Thus, while MDA5 is re-
quired for optimal innate immune gene induction and control of
WNV infection, in myeloid cells the combination of RIG-I and
MDA5 and subsequent signaling through MAVS is essential for
WNV detection and innate immune gene induction.

WNV PAMP characteristics for RLR detection. To determine
the properties of the PAMPs that trigger RLR signaling during
WNV infection, we examined the signaling actions of RNA recov-
ered from mock-infected control cells (mcRNA), cells infected
with WNV for 24 h (icRNA), specific WNV RNA secondary-
structure motifs, and native virion RNA when transfected into
primary MEFs. We first purified RNA from mock- and WNV-
infected cells to generate control mcRNA and icRNA. mcRNA
transfection induces only very low IFN-� mRNA levels, and we
thus normalized all data sets against the response to mcRNA (Fig.
4a). RNA also was obtained from WNV virions (vRNA) by extrac-
tion and purification after ultracentrifugation of infected cell su-
pernatants. As the WNV genome 5= and 3= nontranslated regions
(NTR) contain dsRNA loop structures that might confer RLR rec-
ognition, we also prepared in vitro-transcribed RNA fragments of
the 5= and 3= NTR of the viral genome RNA. Each RNA prepara-
tion was transfected into WT MEFs in the presence of cyclohexi-
mide to prevent translation and de novo viral transcription, thus
allowing us to assess the ability of the input RNA to stimulate
innate immune signaling of IFN-� mRNA expression. Notably,
transfection of icRNA significantly induced IFN-� mRNA expres-
sion in recipient cells compared to control cells transfected with
mcRNA (1,050-fold [P � 1 � 10�5]) (Fig. 4b). We treated icRNA
with Antarctic phosphatase (AP) to remove 3= and 5= phosphate
moieties or with RNase III to digest dsRNA. In parallel, we recov-
ered icRNA from WNV-infected RNaseL�/� cells, allowing us to
assess innate immune signaling induced by possible RNA prod-
ucts of RNase L cleavage (56). icRNA stimulation of innate im-
mune signaling was reduced by �50% following phosphatase
treatment, and it was completely ablated following RNase III
treatment (1,050-fold versus 550-fold [P � 0.001]) (Fig. 4b).
icRNA recovered from RNaseL�/� MEFs contained �8 times
more WNV RNA (data not shown); consequently, we adjusted the
amount of input icRNA into recipient cells to equalize input
RNA levels based on WNV genome equivalents. icRNA from

TABLE 1 RLR-induced innate immune genesa

Gene

Fold induction in cell type

WT DKO

IFIT2 146.1 1.7
IL-6 36.6 0.6
IFN-�2a 467.6 0.9
IRF-7 804.5 2.0
IFN-� 32,294.5 2.5
a Summary of the innate immune gene induction from WT and DKO cells infected
with WNV and plotted in Fig. 2g. All genes were RIG-I dependent early and MDA5
dependent late. Values represent the fold induction at the peak of the innate immune
response from the time course infection in Fig. 2g.
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FIG 3 MDA5 is essential for viral replication control and innate immune induction in primary myeloid cells. Primary bone-marrow derived M� and DCs were
generated from control and RLR KO mice and infected with WNV. Supernatants and cellular protein lysates were collected over a time course to analyze viral
replication and innate immune gene induction. (a and b) Supernatants from infected M� and DCs were assayed for viral load by PFU assay. (c and d)
Immunoblot analysis of protein abundance of WNV, IFIT2, and tubulin (control) in M� and DCs. (e and f) IFN-� ELISA from WNV-infected cells or cells
infected with Sendai virus or ECMV. (g to i) DCs generated from WT, RIG-I�/� � MDA5�/�, or MAVS�/� mice and analyzed for viral load, protein abundance,
and IFN-� protein production. Graphs show the means 
 SDs from three independent experiments. *, P � 0.05.
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RNaseL�/� cells induced levels of innate immune signaling com-
parable to those induced by icRNA recovered from WT cells.
These results suggest that the WNV stimulatory PAMPs are gen-
erated independently of RNase L cleavage products. Neither
vRNA nor the in vitro-transcribed viral NTR RNA induced appre-
ciable levels of IFN-� compared to icRNA. This outcome was
despite the presence of a 5=-ppp on the viral NTR RNA and the fact
that larger copy number of viral RNA was transfected into cells
from the NTR RNA compared to icRNA because equivalent mass
quantities of RNA were transfected into cells for each condition.
Despite an absence of innate immune signaling induction, there
were in fact �470-fold more WNV genomes transfected from the
vRNA than from icRNA, as determined by qRT-PCR (Fig. 4b).
Thus, icRNA but not WNV virion RNA or viral 5=ppp-NTR RNA
motifs induce innate immune signaling. These results imply that
RLR PAMPs are not carried within the incoming WNV genome
RNA of the virion but instead are produced within infected cells,
and that PAMP recognition of icRNA by the RLRs includes RNA
components with phosphate moieties and dsRNA motifs.

Differential kinetics of RIG-I and MDA5 PAMP production
in WNV-infected cells. To determine how RIG-I and MDA5 in-
dividually contribute to the recognition of icRNA PAMPs, we ex-
amined icRNA signaling of innate immune genes in WT, RIG-
I�/�, and MDA5�/� MEFs. We isolated mcRNA from WT mock-

infected cells and icRNA from WNV-infected cells at 6, 10, 12, and
34 h after infection. Equal mass amounts of the recovered icRNA
or mcRNA were transfected into WT, RIG-I�/�, and MDA5�/�

cells in the presence of cycloheximide, and IFN-� mRNA levels
were measured by qRT-PCR. icRNA recovered after 6 h postinfec-
tion stimulated IFN-� mRNA induction in WT cells, but this re-
sponse was reduced in both RIG-I�/� and MDA5�/� cells (Fig.
5a). We observed a difference in early signaling between RIG-I�/�

and MDA5�/� cells in response to icRNA harvested at 10 and 12 h
after infection but not at 34 h after infection. As shown in Fig. 5a,
the early signaling of IFN-� mRNA induction was impaired in
RIG-I�/� cells in which signaling was mediated exclusively by
MDA5. Signaling was comparable in both RIG-I�/� and
MDA5�/� cells upon transfection of icRNA recovered from later
times (34 h) postinfection. Thus, icRNA from early time points of
WNV infection contains PAMPs that were sensed preferentially
by RIG-I, whereas icRNA from later time points of infection con-
tains PAMPs that were detected by both RIG-I and MDA5.

As phosphatase treatment of 24 h-derived icRNA reduced
PAMP stimulation by �50% (see Fig. 4b), we next assessed the
requirement for RNA phosphate moieties to affect PAMP sensing
by either RIG-I or MDA5. icRNA was recovered from cells 24 h
after WNV infection and treated with phosphatase prior to trans-
fection of WT, RIG-I�/�, or MDA5�/� MEFs. Phosphatase treat-
ment of icRNA had a minimal effect on reducing IFN-� signaling
in RIG-I�/� MEFs, suggesting that the remaining MDA5 sensing
of the WNV PAMP was not affected by loss of exposed phosphates
on PAMP RNA. In contrast, phosphatase treatment of icRNA
caused an almost complete loss of innate immune signaling in
MDA5�/� MEFs such that less than 10% signaling remained com-
pared to that observed for untreated icRNA transfected into
MDA5�/� MEFs (Fig. 5b). As a control, these RNAs also were
transfected into DKO and MAVS�/� cells; we failed to see signif-
icant signaling in either cell type (Fig. 5b). These results reveal a
temporal distribution of PAMP detection by RIG-I and MDA5
during WNV infection. Recognition of PAMP RNA within WNV-
infected cells at early times occurs in a RIG-I-predominant man-
ner that depends on exposed phosphate moieties, whereas at later
times PAMP recognition is performed cooperatively by RIG-I and
MDA5. Additionally, our results suggest that WNV generates
RIG-I and MDA5-specific PAMPs with differential kinetics over
the course of viral replication, and that both PAMPs feature a
component of dsRNA that imparts RLR recognition. Results from
these RNA transfection experiments agree with infection data
(Fig. 2) showing that the loss of RIG-I and MDA5 or MAVS abol-
ishes innate immune signaling in response to cytosolic RNA.

DISCUSSION

The central role of MAVS-dependent signaling in controlling
WNV infection and pathogenesis has been established and impli-
cates an essential role for RLRs in immunity against WNV (12, 14,
29, 47). Herein, we delineated the role of RIG-I and MDA5 as
individual PRRs in contributing to the control of WNV and in-
duction of innate immune genes in vitro and in vivo. We found
that each PRR is essential for full immune protection against
WNV. In addition, the susceptibility of mice to WNV infection
lacking both PRRs recapitulates the phenotype of MAVS�/� mice,
confirming the essential nature of RLR signaling over other innate
immune induction pathways (14). The susceptibility phenotype
in DKO mice occurred despite a full complement and expression
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FIG 4 PAMP properties of WNV infection. (a) WT MEFs were transfected
with reagent alone (mock tfxn) or with RNA isolated from uninfected cells
(mcRNA). IFN-� mRNA was measured by qRT-PCR analysis and is shown
relative to GAPDH. (b) RNA purified from cells infected with WNV for 24 h
(icRNA), differentially modified icRNA (phosphatase-treated or RNase III-
digested), in vitro-transcribed WNV RNA NTR motifs, and native virion RNA
were purified, and equal mass quantities were transfected into WT MEFs in the
presence of CHX. Innate immune gene induction was measured by qRT-PCR
analysis for IFN-� mRNA, and relative fold induction normalized to GAPDH
was determined compared to cells transfected with mock-infected cell RNA
(mcRNA). Results are representative of three independent experiments.
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of TLRs and NOD-like receptors (NLRs) in these mice. Thus,
RIG-I and MDA5 are essential PRRs of WNV recognition, with
each serving to transduce innate immune signaling through
MAVS in response to infection of key target cells. The loss of RIG-I
or MDA5 can be compensated partially by the other, but loss of
both genes results in a severe loss of innate immunity to infection.

During an extensive time course infection of MEFs, we ob-
served a deficit in innate immune signaling at early time points in
RIG-I�/� cells. This observation is consistent with our finding that
viral PAMPs from early time points after WNV infection are pref-
erentially sensed by RIG-I. Additionally, we demonstrated that the
WNV PAMP recognized by RIG-I is almost completely dependent
on phosphate moieties and dsRNA structure, whereas the MDA5
PAMP is largely independent of phosphate moieties but depen-
dent on dsRNA structure. Prior studies have suggested that mul-
tiple regions of the WNV RNA present within both genome and
antigenome replication intermediates can be recognized by RIG-I
as PAMP motifs (32). We too observed a modest innate immune

gene induction following transfection of an in vitro-transcribed
WNV 5= NTR RNA (3-fold), but this stimulation was marginal
compared to the PAMPs present in RNA generated in WNV-in-
fected cells (icRNA; �1,000-fold induction of IFN-� mRNA ex-
pression). The low level of innate immune stimulation by in vitro-
transcribed WNV RNA sequences containing highly structured
motifs and 5=-ppp, coupled with the reduction of signaling ob-
served from phosphatase-treated icRNA, indicates that WNV
PAMPs of RIG-I recognition are comprised of multiple motifs. In
this case, 5=-ppp is a component of this recognition that may also
include specific sequence composition and certain RNA struc-
tures (35). Such a 5=-ppp PAMP unit would be present on viral
RNA during virus replication but is not associated within the in-
coming virion RNA, due to the absence of negative-strand RNA
and presence of a 5= type 1 cap on the genomic RNA, which effec-
tively blocks 5=-ppp recognition by RIG-I.

For MDA5, our observations reveal a strict dependence on
dsRNA for signaling by icRNA. Moreover, our data indicate that
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FIG 5 Distinct RIG-I and MDA5-dependent PAMPs accumulate with differential kinetics during WNV infection. (a) icRNA was isolated from WT cells infected
with WNV after 6, 10, 12, and 34 h of infection and subsequently transfected into WT, RIG-I�/�, or MDA5�/� MEFs in the presence of CHX. Innate immune
gene induction was measured by qRT-PCR analysis for IFN-� mRNA, and relative fold induction after normalization to GAPDH was compared to that of cells
transfected mcRNA. icRNA induced less IFN-� mRNA at all time points in RLR-deficient recipient MEFs, but significantly less IFN-� mRNA only was induced
in RIG-I�/� MEFs from icRNA collected at 10 and 12 hpi (P � 0.02 and P � 0.006, respectively). nd, no difference. (b) icRNA from 24 hpi was treated with
phosphatase and transfected into WT, RIG-I�/�, and MDA5�/� MEFs in the presence of CHX, and IFN-� mRNA induction was measured. Results are
representative of three independent experiments.

RIG-I and MDA5 in West Nile Virus Infection

November 2013 Volume 87 Number 21 jvi.asm.org 11423

http://jvi.asm.org


MDA5 contributes to innate immune induction at later times af-
ter initial WNV infection. This response leads to an amplification
of innate immune signaling to IFN-�, as well as response diversi-
fication due to the induced expression (and activation) of IRF-7
and other innate immune signal transducers to drive the expres-
sion of IFN-�2a and increased ISG and cytokine expression (17,
50). Consistent with this, collaborative studies reveal that MDA5
is essential for the optimal priming of effector T cells and that this
process occurs in a T cell-nonautonomous manner, with MDA5
function required for the priming environment (48). Thus, PAMP
recognition and signaling by MDA5, as WNV replication pro-
ceeds, mediate an innate immune response that restricts viral in-
fection and produces mediators supporting T cell priming, which
links innate to adaptive immunity through RLR signaling.

Our study supports a model in which capped, incoming WNV
RNA genomes are hidden from RLR detection, yet during viral
RNA replication the accumulation of uncapped genomes with
exposed phosphate moieties and secondary structure are initially
sensed by RIG-I. It remains a possibility that cleavage of viral or
endogenous RNA by cellular enzymes may contribute to or am-
plify PAMP generation, though our results suggest that intact
icRNA is likely the dominant source of stimulatory RNA. In this
respect, we note that as icRNA contains both viral and cellular
RNA, the latter might contribute to RLR signaling if specific
PAMP motifs are generated and displayed. One scenario would
involve RLR recognition of virus-induced cellular RNA species
that can serve as endogenous PAMPs of innate immune signaling.

Efficient and early PAMP recognition is required to induce an
IRF-3-dependent gene expression signature that controls viral
replication in a cell-intrinsic manner (16). In cells lacking RIG-I
expression, WNV replication proceeds at a higher rate. In con-
trast, in MDA5�/� MEFs, a deficit of innate immune signaling
amplification and diversification is marked by a deficiency in IRF-
7-driven IFN-�2a expression without an increase in viral replica-
tion. This phenotype is consistent with experiments in MDA5�/�

neurons (48) and may reflect the ability of pathogenic WNV to
block type I IFN signaling at later times in infection when MDA5
PAMPs accumulate (17, 53, 54). It has recently been proposed that
the signaling-active form is a large MDA5 oligomer bound to RNA
(57). In the context of WNV, MDA5 might require long dsRNA
replication intermediates for such oligomer assembly, which ac-
cumulate at later times when replication peaks.

In summary, our observations define the complementary and
individual roles of RIG-I and MDA5 in detection and control of
WNV infection. While each RLR can recognize WNV indepen-
dently, signaling by both optimally restricts flavivirus infection
and protects against disease pathogenesis.
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